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Based on a special form of the molecular virial theorem, the recently proposed 
method of momentum density for interatomic interactions is here applied to 
the problem of molecular geometry. Two molecules BH~ and BH~, which 
have the same nuclear framework but favor respectively bent and linear 
conformations, are comparatively studied. Using an approximate  Har t ree-  
Fock momentum density, the total molecular energy (including the nuclear 
repulsion) is partitioned into orbital components,  and a geometry correlation 
diagram is derived. An atom-bond partitioning of the total energy is also 
examined based on the one- and two-center decomposit ion of the momentum 
density. 
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I. Introduction 

In previous papers, we have proposed [1] and developed [2-4] a method of 
momentum density which enables us to clarify the momentum-space  origin of 
nuclear rearrangements such as molecular geometries and chemical reactions. 
Rigorous relations between the momentum density and the molecular total energy 
have been derived [1-4], and the importance of the concept of  contraction (i.e. 
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an increase of low-momentum density with a simultaneous decrease of high- 
momentum density, and expansion (i.e. a reorganization of the momentum density 
reverse to the contraction) has been suggested [1]. The method has been applied 
to several diatomic interactions [5-8] and the applicability of the method has 
been recently discussed in some detail [4]. 

The purpose of this study is to apply the proposed method of momentum density 
to the bending process of triatomic molecules, and to investigate the bent-linear 
geometry correlation in these systems from the momentum space viewpoint. We 
have chosen BH~- and BH2 molecules for this purpose, because these molecules 
consist of  the same nuclei but favor different molecular geometries (i.e. bent and 
linear) depending on the number of electrons (i.e. 8 and 6 electrons). An outline 
of the momentum density approach employed here is given in the next section 
together with the computational details. The results for BH~- and BH~- are 
discussed and compared with each other in Sect. 3. Atomic units are used 
throughout this paper. 

2. Theoretical ground 

Nelander showed [9-1 1] that the polyatomic virial theorem can be written as 

i1 

T(R, O) + E(R, O) + Y~ R,[~E(R, O)/0R,] = 0. 
i - - I  

(1) 

{R, O} are the minimal set of internal coordinates consisting of n bond lengths 
R = {R~, R 2 , . . . ,  R,} and m bond angles O = {01, 02, . . . ,  0m} which are sufficient 
to specify the conformation of a given molecular system. T(R, O) and E(R, O) 
denote the kinetic and total energies of the system, respectively. Under the 
optimum condition of the all bond lengths involved, aE/ORi = 0 (i = 1,2 . . . .  , n), 
the virial theorem (1) takes a simple atom-like form E(Ropt, O ) = - T ( R o p ,  O) 
even for a non-equilibrium conformation of the molecular system. Since the 
kinetic energy T is just half the second moment (Ipl 2) of the momentum density 
p(p), the total energy E of a molecular system, including the nuclear repulsion 
energy, is completely determined by the momentum density p(p) I-4]. That is, 

E(O) = - T(O)= - f dp (Ipl2/2)p(p; 0),  (2) 

where the parameter Rop t has been omitted for the sake of simplicity. The 
momentum density p(p) is defined by p(P)=-N ~ dp2"'" dpN [q~(p, P 2 , . . . ,  PN)[ 2 
with N being the number of electrons, and the momentum wave function 
qb(p~,. . . ,  PN) is obtained from the ordinary position wave function ~ ( r ~ , . . . ,  rN) 
by the Dirac--Fourier transformation 

j=l  
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Since the kinetic energy operator ]p]2/2 appearing in Eq. (2) is angular-indepen- 
dent, Eq. (2) is simplified to [4] 

E(O) = - T ( O )  = - dp (p2/2)I(p;  O), (3) 

where p = IPl and I(p; o)~-p2I~ " d4)~ Ig dOs sin Opp(p; O) is the radial momen- 
tum density. Eq. (3) constitutes the basic equation of the present study, and in 
Ref. [4] this approach has been referred to as Method (B). 

It is then clear from Eq. (3) that a partitioning of the radial momentum density 
I ( p ; O )  into some components results in the corresponding partitioning of the 
total energy E(O). The following two partitionings are examined here. 

(a) Orbital partitioning: Within the framework of independent-particle models, 
the (radial) momentum density is given as the sum of orbital contributions. As 
a result, the total energy is expressed as an exact sum of orbital components.  
Takahata  and Parr [12] stressed that no other additive decompositions of the 
total energy are known at the Har t ree-Fock level of accuracy, and gave a plot 
of  the orbital kinetic energy for H20 molecule based on the first equality of  Eq. (3). 

(b) Atom-bond partitioning: For LCAO wave functions, the (radial) momentum 
density can be separated into the contributions from atoms and bonds according 
to the centers of constituent AO's. The total energy is then given as the sum of 
these components,  though this partitioning is basis-dependent similar to the 
Mulliken population analysis. 

For BH~ and BH2 molecules, we have assumed the C2~ geometries which are 
specified by a set of  two internal coordinates R ( B - - H  bond length) and 0 (HBH 
bond angle). For both molecules, approximate Har t ree-Fock wave functions have 
been calculated as a function of 0 using the GAUSSIAN80 program package 
[ 13] with the 6-31G** basis. At every 0, the optimizations of the orbital exponents 
and the bond length R have been carried out simultaneously, which guarantee 
the validity of  Eq. (3). The exponent optimization has been performed by introduc- 
ing a single scaling factor common to all the orbital exponents. 

3. Results and discussion 

We discuss the bending processes of BH~ and BH~ molecules using the results 
of linear conformations as references. As 0 decreases from 180 ~ BH~ molecule 
becomes stable and the equilibrium conformation is calculated to be 0 = 97.80 ~ 
and R = 2.413 with E = - T = -25.674. On the other hand, BH~- molecule becomes 
unstable with the decrease of 0, and the molecule is most stable at the linear 
shape (R = 2.203) with E = -  T =-25 .473 .  

In Fig. 1, the reorganization of the radial momentum density AI  from the linear 
conformation is shown for the two molecules. The change in the kinetic energy 
density (p2/2)AI is also given which represents the contribution of the momentum 
density to the kinetic energy. (Hereafter, the symbol A is used to denote the net 
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Fig. 1. Reorganizations of the radial momentum density Al(p) (solid line) and the kinetic energy 
density (p2/2)AI(p) (dotted line) from the linear conformation. (a) BHy molecule at 0 =97.80 ~ 
(b) BH~- molecule at 0 =90 ~ 

change from 0 = 180~ For BH~- molecule (Fig. la, 0 =97.80~ AI shows both 
the contractive and expansive reorganizations. The contraction in the low momen- 
tum region is mainly due to the valence orbitals, while the expansion in the high 
momentum region is mainly due to the boron ls core orbital (see Sect. 3.1). As 
the curve for (p2/2)hI shows, the latter gives a larger energetic contribution, and 
the total reorganization is expansion which corresponds to the positive AT and 
hence the stabilization of the system by AE =-0 .067.  For B H ]  molecule (Fig. 
lb, 0 = 90~ the situation is approximately opposite and the total reorganization 
is contraction. This is the momentum density origin of the destabilization 
(AE = 0.119) of this system. We further examine these opposite changes in BH~- 
and BH~ molecules in terms of the two partitioning methods mentioned in Sect. 2. 

3.1. Orbital partitioning 

Using the orbital kinetic energy Ati, we show the orbital partitioning of the total 
energy in Fig. 2 as a function of the bond angle 0. The corresponding momentum 
density origin is given in Fig. 3 for 0 = 97.80~ -) and 0--90~ 

In Fig. 2, it is seen that all the orbitals can be classified according to their roles 
in the bent-linear correlation. Common to the both molecules, the 3al orbital 
gives bending contribution, whereas the 2al and 2b2 orbitals give linearizing 
contribution. The l b  I orbital is almost indifferent. The contribution of the lal 
orbital is rather small and shows a trend similar to the total sum. The exponent 
optimization by a single factor is considered for the laL contribution, since this 
procedure may induce the same change that the whole molecule favors to the 
core ( l a  0 orbital. However, the lb2 and 4aj orbitals play different roles in the 
two molecules. In BH2 molecule, the 3a~ (HOMO) gives the largest bending 
contribution and this orbital seems essential for the bent equilibrium conforma- 
tion. In BH~- molecule, however, the lb2 orbital (HOMO) is almost indifferent, 
and the 2 a  I orbital (next HOMO) gives a predominant contribution to the total 
curve. In the present analysis, the highest a~ orbitals seem important to determine 
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Fig. 2. Orbital partitioning of the negative kinetic energy. The orbital contribution refers to single 
electron, while the total contribution refers to all electrons. Solid and dotted lines mean occupied 
and virtual orbitals, respectively. (a) BH~- molecule. (b) BH~ molecule 
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Fig. 3. Orbital partitioning of the reorganizations h i ( p )  (solid line) and ( p B / 2 ) h l ( p )  (dotted line). 
(a) BHy molecule at 0 = 97.80 ~ (b) BH2 ~ molecule at 0 = 90 ~ 
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the shapes of the molecule. The order of the magnitude of orbital contributions 
is approximately l bl (indifferent)< l al (bent or indifferent)~ l b2 (linear or 
indifferent) ~< 4al (bent or linear) < 2a, (linear) < 3al (bent) < 2b2 (linear). 

The above results do not agree with the well-known Walsh rule [14] (for other 
models for molecular geometry, see e.g. [15]) except for the 3a~ and 1 bl orbitals, 
though the present bent-linear classification of the orbital contribution is based 
on an exact partitioning scheme. The corrected Walsh rule for AH2-type molecule 
is known to be 2a, (bent), lb2 (linear), 3a~ (bent), and lbl (indifferent) in the 
increassing order of the orbital energy. Although the Walsh model includes the 
undefined concept of orbital binding energies, the role of the nuclear repulsion 
(which is not explicit in the Walsh model) seems to be essential for the above 
discrepancy. A more extensive study on the variety of molecules is needed to 
clarify this point. 

On the basis of AI and (pZ/2)AI for individual orbitals given in Fig. 3, we can 
understand the correspondence between the contraction/expansion of the orbital 
momentum density and the negative/positive contribution of the orbital kinetic 
energy. When compared with the l b2 orbital where only the valence AO's 
participate, the a, orbitals are characterized by small but long tails in the high 
momentum region due to the contribution of the boron 1 s AO. The reorganization 
of the la,  orbitals are very small and show expansion (BH~) and contraction 
(BH~-). The 1 b 2 orbitals are contractive (BH~) and slightly expansive (BH~). The 
2a~ and 3aj orbitals include both patterns of the contractive and expansive 
reorganizations. Since the reorganization in the high momentum region is sig- 
nificant energetically, the 2al orbital is contractive and the 3a, orbital is expansive. 

3.2. Atom-bond partitioning 

In Fig. 4, the total energy is partitioned into the contributions from the atoms B 
and 2H and the bonds 2(B--H) and H - - H  for the bending processes of BH~ 
and BH[  molecules. For both cases, the 2H contribution is bending, the B and 
2(B--H) contributions are linearizing, anal the H - - H  contribution is almost zero. 
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Fig. 4. Atom-bond partitioning of the negative kinetic energy. (a) BH[  molecule. (b) BH + molecule 
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The atomic contribution B +2H is larger than the bond contribution 2(B--H) + 
(H--H) .  Then the relative magnitudes of  the linearizing B component and the 
bending 2H component determine the stable conformations of the molecules. 
The bending 2H is dominant in BH2 molecule, whereas the linearizing B is 
dominant in BH~- molecule. These observations are related to the change in the 
electron population of each component�9 

The momentum density origin of the atom-bond partitioning is shown in Fig. 5. 
For the atom and bond components of  the momentum density, the normalization 
relation does not hold, and therefore the concept of contraction and expansion 
does not apply to the atom-bond partitioning. Alternatively, the integration of a 
component AI over [0, oo) yields the change of the Mulliken population of the 
corresponding component. Generally, an increase (a decrease) of the population 
of some part raises (lowers) the kinetic pressure leading to an increase (a decrease) 
of the kinetic energy of that part. In the case of BH~-, the population flows mainly 
from the 2(B--H) to the 2H part with the decrease of 0, and this is the origin of  
the large bending contribution of the 2H part. In BH~- molecule, the population 
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Fig. 5. Atom-bond partitioning of the reorganizations Al(p) (solid line) and (p2/2)Al(p) (dotted line). 
(a) BH~- molecule at 0 = 9%80 ~ (b) BH~- molecule at 0 = 90 ~ 
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flows from the 2(B--H) and H--H parts to the B and 2H parts. Then, the 2H 
part contributions to bending. However, in the B part, the valence population 
predominantly increases accompanying a slight decrease of the ls population. 
The momentum density then increases around p - 1.3 and decreases for p > 2.8. 
This lowering of the high-momentum density causes the linearizing contribution 
of the B part in BH~ molecule. 

4. Summary 

Using the momentum density and the resultant kinetic energy, the bending 
processes of BHf  and B H f  molecules have been comparatively studied. Though 
the molecules favor different conformations, some common features have been 
clarified. In the orbital partitioning, each orbital has been classified whether it 
contributes to bending or linearizing. The results have been common to the two 
molecules except for the 1 al, 1 b2, and 4al orbitals, and a systematic investigation 
of the orbital kinetic energy is suggested as a possible exact decomposition of 
the total energy. The highest a~ orbitals, 3al for BH~- and 2a~ for BH~, have 
been found to be important to determine the stable geometry. In the atom-bond 
partitioning, the atomic components have been dominant. The contribution of 
the central B atom is linearizing, while that of the terminal H atoms is bending. 
The bent BHf  and linear BH~- geometries are understood as the result of the 
relative dominance of these opposing contributions. 
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